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Abstract—In this paper, we discuss techniques to quantify
quality of cosmological images in the frequency domain. After
selecting the neural network topology and input data for the
discriminator that give us the best results, we discuss why the
same data doesn’t work for the generator. We also explain
why the same approach fails for the generator and present
our solution for that case. Finally, we discuss the optimizations
used to generate large images.

The problem consists of two parts. First, we had to find a
way to quantify the concept of a ”cosmological image”. For
this, we were given images and their scores. Second, we had
to use knowledge and results which we obtained to generate
a ”cosmological image”. The task proved to be hard in a few
ways. A difference between a good and a bad image often
is not detectable by the naked eye. Furthermore, the images
are large in size, which required careful choice of techniques
for discrimination and generation. Our solution achieves great
grading performance. It is within 0.2 absolute error on the
grading set. On top of it, we managed to generate relatively
large images, which are similar to the prototype cosmological
image. Our research show that classification (and grading
tasks) on images which have strong local characteristics, which
don’t have a fixed global location (such as stars) can be
accomplished better in the frequency domain. Furthermore, we
obtain better results while using complex numbers in the neural
network to represent FFT, than with two separate channels.

I. INTRODUCTION

Captured cosmological images by telescopes contain a
lot of noise due to light pollution, cosmological background
radiation, and multiple other factors. Taking a probabilistic
viewpoint, a cosmological image can be described as a
combination of the true star and noise distributions. Our
objective is to learn the true star distribution and be able to
compute a score which gives an indication to the quality of
a given cosmological image. Furthermore, after learning the
parameters for the true star distribution we want to sample
that space and generate new cosmological images.
Our starting point is a data set of these images split up
into two sections, scored images and labelled images. The
scored image section contains a mapping from an image
to a score [0, 8], which indicates the quality of that image.
The labelled image section contains labelled data into two
categories (real cosmological image, fake cosmological
image).

To address the first issue of computing a score for a

cosmological image we relay on training a discriminator
function in a supervised manner with the scored images.
Recent publications [1] have shown that this objective is
best addressed by a deep convolutional neural network.
This network needs to be trained on a large collection of
data to learn the complex mapping from noisy images to
cosmological scores.
Considering that a construct of a ”good cosmological
image” is a highly irregular function we decided to use
neural networks for the task. A Neural network consists
of neurons, and dendrites (weights) connecting them. By
changing these weights we can train the network to trigger
different neurons for different inputs. With the increase in
computing power in recent years, neuroscience, deep and
convolutional neural networks have become increasingly
popular.
The overall structure of the paper takes the form of seven
sections, including this introduction. In Section II, we
examine the relevant work to our contribution in this paper.
Section III describes the models chosen, the methods used,
and the motivation for following such an approach for each
of the discriminator and generator. Section IV shows the
results obtained, then they are discussed further in detail
along with the limitations in Section V. Finally, Section
VI gives a brief summary and critique of the findings, and
areas for further research are identified.
Despite the fact that our method works on cosmological
images, its functionality can be easily extended to other
domains as well. Our main contributions can be summarized
as follows:

• The first, to the best of our knowledge, discriminator
that operates in frequency space and trained on real
captured space images. Our method performs better
on the regression task than most of the state-of-the-art
methods.

• Incremental scaling of the generated image in the
generator, and a probable explanation of why frequency
domain generation of the image fails.

• Lastly, we analyse various parameters and design de-
cisions in our framework. Including decoupling of
complex numbers into channels and downsampling the
input or tiling the images. To determine the optimal



hyperparameters we followed the gird search approach.

II. RELATED WORK

There have been various approaches for generative mod-
els proposed in the last few years. Goodfellow et al. [2]
proposed the first generative model, which is trained in an
adversarial process. The basic idea is to train two models,
a generator, which learns data distribution and a discrimi-
nator tries to distinguish between real and generated data.
Radford and Metz [3] take that idea and combine it with
the state-of-the-art deep convolutional networks and propose
a strong candidate for unsupervised learning. By adding
architectural constraints on the topology, the authors get a
stable training under most settings. However, this models
propose a more general viewpoint on the problem and are
applicable to various domains. In the sense of cosmological
data, Schawinski and colleagues [4] proposed a generative
model trained on 4550 fits images from the Sloan Digital
Sky Survey to recover features from degraded images.

III. MODELS AND METHODS

A. Motivation

Before diving into the models, we took a closer look at
the data set to motivate our design choices. We started by
inspecting the labeled data set and realized that the ”fake”
and ”real” images are actually very similar. In figure 1a we
can see a real cosmological image and in 1b a fake one,
which is actually quite different. However, figure 1c is also
considered not cosmological image. We could not tell by
just looking at images, which ones are ”real” or ”fake”. This
observation led us to the idea that we are not looking at the
images in the correct basis. Inspired by that we decided to
compute the Fourier transform of the images and inspect the
representation in frequency space.

In figure 1e we transformed the good and the bad image
into frequency space using the fast Fourier transform [5].
Here we can easily see a difference, while the good image
has a wavey eye shape pattern, the bad one has most of its
energy in the high frequencies, which represents the noise
in the black regions and is not easily visible for the naked
eye.

B. Method

For the scoring network, discriminator and the generator
we use a two dimensional convolutional neural networks.
We choose the convolutional 2D neural network because
we are working on images and the convolutional neural
networks are the best fit for that purpose[6]. The scoring
network and the discriminator consist of several 2D
convolutional layers (four in the case of the discriminator),
each followed by a pooling layer to gradually decrease
the resolution of the image. At the end we added a dense
layer to aggregate and analyze global data from the image
and a dropout layer to improve training. The final output

was a sigmoid categorizing the image (or assigning it score).

Generator followed similar procedure, but in reverse. We
decided not to use transpose convolutional layers due to
the checkerboard pattern it can introduce[8]. The network
takes Gaussian noise, and lets it through a 2D upsampling
layer, which performs a nearest neighbor upscaling, and
then through a 2D convolutional layer, which ”smudges” the
information from the neighboring neurons and adds detail.
The output layer uses tanh as the activation function with
the appropriate value range to cover all colors. This brings
the image to 128x128 pixels in size. Afterwards, this image
is routed through a separate neural network which converts
it to 252x252 pixels, and finally through a third one which
increases the size to 500x500 pixels. All upscaling networks
were trained separately. This is done to bypass hardware
limitations on training large neural networks on our hard-
ware. This image is then upscaled to 1000x1000 pixels. We
consider this a reasonable approximation because 500x500
image contained enough information to achieve a remarkable
score on a Kaggle testing set. Image pixels are normalized
in the range [-1, 1], and then converted to frequency domain.
Normalization of FFT data by subtracting the mean and
dividing by the standard deviation also brings a small
improvement during the training. We also experimented with
Haar wavelets due to the locality of stars in the images. This
data is then fed to the discriminator neural network which
consisted of 3 convolutional layers. Kernel sizes in layers
are small (3 to 5). Dense layer size has 256 neurons. By
changing the values of parameters we determined that kernel
size and dense layer size do not affect the result very much.
Adding additional layers and making the network ”deeper”
leads to an increase in precision, even though its effect was
rather small - 5% improvement within the metric in the 2
layer case. This is to be expected because local information
from previous convolutional layers is further processed in
subsequent layers. However, training a deep neural network
requires large hardware resources, which limits us to only 4
convolutional layers.
Generator input noise is selected as Gaussian to speed up
the training and give better results. The only post-processing
was converting output of the network to the colors, and
resizing the results to required resolution. For the training
of the discriminator we use all images labeled as ”good”
from the labeled dataset, as well as all images with a score
larger than 4.0 from the scored dataset. Unfortunately, due to
limited resources, images are downscaled to the resolution
of 512x512 pixels. Parameters have been tuned by training
it on the provided datasets - scored for the rating network
and labeled and scored (with high scores) for the GAN pair.
Rating network is evaluated on the Kaggle dataset which
enabled us to provide 5 submissions a day. We consider this
the best practice because it gives us an objective measure of
progress, and enables us not to withhold any data from the



(a) Real cosmological image (b) Fake cosmological image (c) Bad cosmological image
labeled as fake

(d) Spectrum plot of good im-
age (abs. logscale)

(e) Spectrum plot of bad image
(abs. logscale)

network during training. For the rating network both MSE
(mean squared error) and MAE (mean absolute error) give
adequate results with the FFT data. However, when we try to
train the network with spatial data, MAE makes the network
more prone to collapse at a local minimum. With FFT data
collapses during training were rare. After training, we used
Kaggle to make sure that MSE convergence is close to MAE
metric used on the website. For the image generation we
had to use a classifier, so neither MSE, nor MAE, provide
adequate loss measurement. Instead, binary crossentropy is
used, which is a standard metric in classification problems.
In both cases ADAM is used to find the minimum of the loss
function. We use numpy and scipy for numerical processing
of the images (eg. FFT), and PIL for image manipulation.
Keras Framework is used to build the neural networks[7].

IV. RESULTS

To compare our approach to the state-of-the-art models,
we implement two baseline algorithms and measure the
mean squared error loss during optimization, as well as
the mean absolute error calculated by Kaggle for a final
prediction. For the first baseline algorithm, we use the
discriminator proposed by Goodfellow at. al [2], which is
basically a neural network with 3 dense layers and sigmoid
activation function. The second baseline is the discriminator
of the deep convolutional GAN proposed by Alec Radford
and Luke Metz [3]. Their model structure has four convo-
lutional layers combined with a Leaky ReLu function and
dropout layers. This part covers the discriminator of our
system.
For the generator, we do not have a measurement function
to evaluate the quality of the generated images. Therefore
we visually evaluate the quality and compute the Frobenius
norm between a generated image Ig and all the train images
Xt to make sure that the network was able to learn the real
distribution. If ∀Ii ∈ Xt : argmini ||Ig − Ii||2F is exactly
zero, our generator just learned one image and not the real
star distribution.

Figure 1. Our method compared with the two baseline methods

In figure IV we can see that the baseline 2 (DCGAN)
is not converging in 300 episodes and pedals around 0.07.
On the other hand, the baseline 1 converges rather fast. Our
implementation needs around 150 episodes to converge to a
mean squared error of 0.0001. However, on the validation
dataset provided from kaggle, we can see that baseline 1
clearly outperform baseline 2, with nearly half the mean
absolute error. In table I we can see that our method
outperforms both baselines and has a mean absoute error
of 0.18, which is 4 times lower than the baseline 1.

Table I
EVALUATION ON THE TEST SET FROM KAGGLE

Method Prediction error (MAE)
Ours 0.18157
NN (Baseline 1) 0.89831
DCGAN (Baseline 2) 1.71341

The first stage of a generator provides 128x128 images
of variable visual quality. This is due to the locality of
stars. It may happen that many pixels are activated with
low intensity, instead of only a few with high. This leads to
the appearance of light patches which could be interpreted as
nebulae. However, these patches don’t appear in the training
set and are artifacts of the generation in the spatial domain.



This could be one of the reasons why rating of images in
the frequency domain gives better results - larger patches
appear as completely different frequencies, no matter where
they are in the image.
Feeding these artifacts to the subsequent neural networks
actually magnifies them, because they were trained to up-
sample cosmological photos. This makes detection of lower-
quality images trivial. After the second upscaler, they will
be converted to a sequence of random vertical stripes. If
the first network generates a high-quality image, the output
of the final image is of high visual quality and cannot be
distinguished from the original images.

V. DISCUSSION

Scoring data with randomly distributed salient local fea-
tures with a neural network can lead to frequent training
collapse when done in the spatial domain. However, when
converted to the frequency domain, we seem to get more
stable training, and better results. This could be because of
the Fourier transform of the image does not depend strongly
on the exact position of the star, but on their number,
intensity and frequency in the image. Our experimentation
with Haar wavelets instead of FFT failed to produce any
useful results, and is comparable to the spatial domain, with
higher resource usage.
The convolutional neural network seems to be a good fit for
the problem due to the locality of the features we are looking
for. In the spatial case, networks would need to be deeper to
correlate data from distant areas of the image. Fortunately,
FFT does this for us automatically and lets us get away with
shallower networks.
Generation in the spatial domain frequently activates un-
necessary pixels, which tend to confuse upscaling networks.
Thankfully, results of upscaling of these images are quite
easy to detect due to artifacts introduced, so this interaction
of multiple networks can be ignored.

A. Challenges and limitations

One of our major challenges was it to connected our
discriminator with the generator. Since our discriminator
is operating in frequency space, but we need the results
to be in the spatial domain, we need to compute the
inverse Fourier transform at some point. To tackle this
challenges we tried various combinations, like generating
images directly in frequency space and feeding them to the
discriminator or generating image in the spatial domain
and transforming them into the frequency domain. The
main issue for the first approach was that minor errors in
the frequency domain result in large errors in the spatial
domain. For the second approach, the framework we used
did not provide a way to compute the back-propagation
with the Fourier transform layer, between the generator
and discriminator. Further research should be conducted in

coupled frequency-spatial domain GANs.

Another issue with the data set is the size of the images.
Every image is 1000x1000 pixels with one channel taking
roughly 1 Mb per image where each pixel has 8 bit.
Since our scored dataset consists of 9600 images, for each
image we compute the Fourier transform, which outputs one
complex128 array, resulting into a memory usage of roughly
153.6 GB. For that reason we need to find a way to reduce
the amount of data used to train our method. During our
research we tried various methods, from operating on tiles
to random patches of different sizes. Finally, we found out
that downsampling with the Lanczos resampling to the size
512 times 512 gives the best results. Note that even with
this, we managed to obtain adequate results, but at a price
of training the network on batches of 8 images.

Even though wavelets should detect local changes better
than the Fourier transform, we failed to notice any improve-
ment over the spatial domain scoring. This could be because
our problem depends both on local (shape and brightness of
a star) and global data (their relative position and number).

We also tried generating patches independently and dis-
cusses magnifying patches of a smaller image separately.
However, these methods lead to weakly correlated neigh-
boring parts of the image, and poor visual characteristics.

VI. SUMMARY

In this paper, we managed to present a novel technique
of scoring images with strong local features which should
be positionally independent. We also pursued several direc-
tions in generating such images, and presented a technique
which works in conditions of limited hardware resources.
We also identified several techniques which don’t provide
an improvement over the current state of the field, (Haar
wavelets, tiles and patches) and a couple of others which
warrant more research (complex neural networks and spatial-
frequency domain GANs).

VII. FURTHER WORK

We discovered that the scoring network used for Kaggle
submission gives the best result when given complex number
frequency domain input. This is peculiar and further research
in the direction of complex neural networks is needed.
Another interesting direction is to make the GAN pair
operate in different domains. Discriminator judges the image
better in a frequency domain (evident by Kaggle results),
while generator generates an image better in a spatial domain
(visual inspection). Progress in this area would lead to higher
quality generated images, with fewer artefacts, and would
probably eliminate ”the nebulae” which we see on spatial
GANs.
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