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Abstract—Geometry data in massive amounts can be generated
thanks to the modern capture devices and mature geometry
modeling tools. It is essential to develop the tools to analyze and
utilize this big data. In this paper, we present an exploration
of analyzing geometries via learning local geometry features.
After extracting local geometry patches, we parameterize each
patch geometry by a radial basis function based interpolation.
We use the resulting coefficients as discrete representations of the
patches. These are then fed into feature learning algorithms to
extract the dominant components explaining the overall patch
database. This simple approach allows us to handle general
representations such as point clouds or meshes with noises,
outliers, and missing data. We present features learned on several
patch databases, highlighting the utility of such an analysis for
geometry processing applications.

Index Terms—Geometry representations, dictionary learning,
big geometry data.

I. INTRODUCTION

As sensor technology such as RGBD sensors develops, ac-
quiring various scanned data from the real world is becoming
easy. This data consists of vertices and their connectivities, and
it is called as 3D geometry data. Most of 3D geometry data
from the real world are not easy to process because of its huge
amounts of unstructured points and lower connectivity infor-
mation. In computer graphics, many research works have been
conducted to represent and analyze geometries. More recently,
signal processing and machine learning techniques [1] have
been applied for analyzing and reconstructing 3D geometries.
In such approaches, it is often challenging to analyze the dom-
inant components of 3D geometries to efficiently and robustly
represent a big amount of geometry data. In addition, it is
essential to reduce various types of noises and handle missing
parts of 3D geometries. In the fields of 3D reconstruction
and shape analysis, existing methods for solving this problem
can be divided into two groups: local and global methods.
Local methods divide a 3D model into local geometric features
and analyze each feature’s dominant components [2,3]. These
methods have the advantages of fast processing speed and ro-
bustness against noises and outliers, but handling big missing
parts is difficult. On the other hand, global methods [4] can
handle big missing parts because they consider global shape

characteristics, but the data processing time is much longer
than local ones, especially for big geometry data.

To properly handle big geometry data composed of a
huge amount of unstructured point data, we explore geometry
representations using a local approach. We use geometry
patches as local geometric features, and employ a dictionary
learning scheme consisting of sparse approximation to extract
the dominant components describing the overall patches from
unsupervised data.

Sparse signal representation is used in various areas such
as image processing, machine learning, neuroscience, and
statistics [1]. Recently, this traditional technique is extending
its application area to 3D geometry processing with mesh
denoising, 3D surface reconstruction and mesh segmentation.
In the geometry processing, input signals are usually vertices
and normals with basis functions, and each signal is analyzed
by signal processing algorithms to reproduce surfaces with
reducing noises and outliers. For example, sparse regulalriza-
tion [5] for image smoothing is extended to 3D geometries. To
preserve edges and smooth noises, several operators such as
discrete differential operator [6] and Laplacian [7] are used to
compute gradient terms in sparse regularization. Other works
attempted to use projection operator [8,9] to reduce noises
and outliers when reconstructing surfaces. Most of sparsity
methods in geometric processing are increasing because they
are strong for preserving features and reducing noises and
outliers.

Dictionary learning is one of the sparse signal representation
methods and it optimizes dictionary and coefficient informa-
tion at the same time. This technique is mainly used in image
compression, super-resolution, and denoising. However, its
application area is increasing in 3D geometry reconstruction,
compression of point clouds and rendering because it solves
geometric problems directly. In the area of geometric deforma-
tion and animation, the dictionary learning method is used for
pose decompose [10] and analyzing mesh sequence [11] and
highly deformable models [12]. In 3D reconstruction, sparse
dictionary is used for storing local geometry features from
triangle meshes [4]. Another research [13] uses self-similarity
and K-SVD [14] for geometry compression on point sampled
surfaces.
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Fig. 1. Overall pipeline of geometry representations using unsupervised
feature learning.

In this paper, we explore representations for big geome-
try data using unsupervised feature learning with geometric
patches. Fig. 1 shows our suggested overall pipeline. First,
we define local geometric patch data from raw point clouds,
and parameterize local features using a radial basis function.
The dictionary learns dominant components of local features
and represents overall patches. We perform experiments and
analyze geometry by creating patch datasets from several
shape models.

In section 2, creating method of geometric patch data
and parameterized local geometric data is described with
dictionary learning. We show and analyze the experimental
results of dictionary learning in section 3, and discuss about
future work and conclusion in section 4.

II. METHOD

To construct a local geometry representation for dictionary,
choosing basis function is important. In this paper, we use
Gaussian radial basis function to parameterize local geometry
based on a geometric patch, and learn the dictionary using
this representation. For the experiment with various local
geometries, different patch sets are created with different sizes
and rotation angles. The training data is learned using well-
known dictionary method K-SVD [14].

A. Geometric Patch Generation

Raw geometry data has different sizes, number of vertices
and density of points depending on creating methods. To get
the coherent patches, we first unitize the size of a model as
range of [-1,1]. Then seed points are selected to divide the
model into patches, and a patch size is determined by the
bounding sphere with the radius r from a seed point. To
avoid the sampled points in a bounding sphere are shared
with different bounding spheres, we measure the distances
between points and the centers of sharing bounding spheres.
The sampled points are included in the nearest bounding
sphere, same as [13]. Then the vertex coordinates of each
patch are stored to generate local geometric patches.

To get Gaussian height fields, local planes should be deter-
mined. Therefore, we set the center of a bounding sphere as a
local plane’s center and calculate a normal of the local plane
by averaging vertex normals in a bounding sphere. This normal
determination is useful since the vertex normals are oriented
to outside of the surface. When 3D models are synthesized

(b) (c) (d)

Fig. 2. Generating patches from a sphere model, which consists of 2,500
points. (a) shows determining a patch from a bounding sphere with a center
point p, a radius r, and a patch normal n. (b) shows a patch with » = 0.3,
(c) is a patch with » = 0.5, and (d) is a patch with » = 0.7.

(a)

or reconstructed, the global shape can be easily constructed
since the orientation problem of the local geometries is solved.
The height field stores distances and heights of included
vertices. Here, the distance is stored as a radial distance on
a local plane from the center of the plane to the vertex,
and the height is stored as an orthogonal distance from the
vertex to the local plane. These information are stored as
training data for dictionary learning. Fig. 2 shows generating
method of patches from a sphere model. Depending on radius
r, the patch size is determined differently. As decreasing
of r, a patch includes less vertices, hence the number of
local geometry representation is increased. This means the
increment of signals of the dictionary.

B. Dictionary Learning

To learn the dictionary, we assume that the input signals
can be sparsely represented. We used the Gaussian radial
basis function for the height field in the previous section.
The uniform grid is created by Gaussian function, and the
size of grid is 16 x 16 for each signal [15]. The dictionary
alternatively performs sparse coding and updating atoms in
each iteration. Therefore, it finds the best coefficient matrix
and dictionary to make better representations of training data.
Basic algorithm is as follows:

min [|F7 — DX||%, s.t]|zillo < 8,Vi=1,2,....m. (1)

In (1), X indicates coefficients of training data, D indi-
cates dictionary and F' indicates a signal of training data
F =[f1,..., fn). The number of signals is same as the number
of columns of the training matrix F'.

The dictionary learning is performed with sparse coding
and dictionary update. In sparse coding, the coefficient matrix
X and sparse matrix D are determined by minimizing error,
and a pursuit algorithm is used to compute z; € X. In the
second phase, dictionary atoms di € D are updated. This
process performs iteratively until the error is converged. In our
experiments, the number of iterations is 25 to 30 depending
on the training data size.

III. EXPERIMENTS

In our experiments, we compare and analyze learning results
depending on geometric patch groups with different sizes,
orientations and mixed components. We compare the error



convergences during iterative learning, and take the biggest
four eigenvalues from the learned dictionary to show the
learning results on different patch groups.

A. Scales of Patches

When the geometric patch size is too small, all local
geometries seem to be small and same, thus we cannot get
a proper dictionary. On the contrary, when the geometry patch
size is too big, the complexity of a local geometry is too
high and this is similar to consider a global geometry. In this
experiment, we create sphere and bumpy sphere models. Each
model has 5,500 vertices, and the bounding volume is [-1,1].
From these shape models, we get three different patch sets
by using bounding spheres, which have radius 0.3, 0.5 and
0.7, respectively. The total dataset for this experiment is six
patch sets from two different models. Then we make a discrete
representation on each patch with the Gaussian basis function
and put all signals into the training matrix. The created models
and K-SVD error convergences are shown in Fig. 3. The first
column shows error plots of a sphere model, and the size
of patches are increased from (a) to (c) as 0.3, 0.5 and 0.7,
respectively. We can notice that the error convergences are
better when the patch size is bigger in the sphere model case.
However, the graphs of the bumpy sphere on the right column
show unstable convergence results in less than 15 iterations
when the patch size is increased.

Atoms of the learned dictionary are shown in Fig. 4. Each
plot shows three atoms related to the three biggest eigenvalues
in a learned dictionary with 30 x 30 Gaussian grid.

B. Angles of Patches

To see the results depending on different angles of patches,
we created patch sets with different angles to make training
sets. For a patch, we generated 36 rotated patches by rotating
10 degrees from 10 to 360, so that each patch has its own 36
rotated patches. The axis of the rotation is a normal of the
patch by averaging included vertex normals. With the sphere
model, we used 0.5 size of a patch set, and the total generated
patches are 74 patches x 36 angles = 2,664. For comparison,
we also created a patch set from the bumpy sphere with the
patch size of 0.5. In this case, the total rotated patches are 79
patches x 36 angles = 2,844. Fig. 5 shows how we created
patches by rotating angles.

When the training data is created, the data should be
converted into training signals. We created training matrices
from the generated patches. The matrix consists of 1,368
columns with the sphere model and 1,620 columns with the
bumpy sphere model. Also, we added one more rotating
patch set from open 3D geometry archive [16]. We chose
rockerArm composed of 64 patches x 36 angles = 2,304
patches with 0.3 for the patch size. Fig. 6 shows the graphs
of the singular values and atoms of the learned dictionary
by showing indicating patches with Gaussian basis. As the
number of training data increases, we can notice that the atoms
in the dictionary look similar.
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Fig. 3. K-SVD error convergences with simple shape models. The first column
shows the convergence errors of patch sets from the sphere model, and the
second column shows the convergence errors in the case of the bumpy sphere.
From (a) to (c) show the error convergences when r = 0.3, 0.5 and 0.7, and
the number of patches are 196, 74 and 38, respectively. From (d) to (f) show
the error convergences with r=0.3, 0.5 and 0.7 and the number of patches are
227, 79 and 45, respectively. The iteration time is 25.

C. Mixing Patches

In this experiment, we constructed mixing patch sets with
different shape models and different sizes of patch sets as
training data. First, we compared the learned dictionary with
different sizes of patch sets from the same model. We chose 0.5
and 0.7 size of patch sets and mixed two sets from the sphere
model and the bumpy sphere model, respectively. Second, we
mixed the same size patch sets from different models. For this,
we chose 0.3 size of patch sets. The training results are shown
on Fig. 7. In Fig 7 (a), (b) and (c), the numbers of patches are
112, 124 and 119, respectively. As shown on the right plots,
the ranges of eigenvalues are different, but the shapes of the
patches look similar.



IV. CONCLUSIONS

In this paper, we explored and presented local geometry
features from dictionary learning for big geometry data using
parameterized patches. We created several simple geometries
to make training sets by changing patch sizes, rotation
angles and mixing different patches from different models.
In our experiments, we have shown that the local geometric
representations can be handled properly with dictionary
learning by showing the atoms of the dictionaries. In addition,
the radial basis parameterized local patches and learning
results have shown the potential utilization of geometric
dominant components in geometry processing. In the near
future, we are going to use the parameterized local features
and dictionaries to reconstruct high resolution geometries or
complex geometries from big geometry data.

ACKNOWLEDGMENT

This work was supported in part by Korean NRF and
Swiss SER under the Korean-Swiss Cooperative Program
(2013K1A3A1A14055180) and in part by the NRF grant
(2014R1A2A1A11053135).

REFERENCES

[1] L. Xu, R. Wang, J. Zhang, Z. Yang, J. Deng, F. Chen, and L. Liu,
“Survey on sparsity in geometric modeling and processing,” Graphical
Models, 2015, in Press.

[2] G. Mustafa, H. Li, J. Zhang, and J. Deng, “¢1-regression based subdivi-
sion schemes for noisy data,” Computer-Aided Design, vol. 58, pp. 189
- 199, 2015.

[3] R. Hu, L. Fan, and L. Liu, “Co-segmentation of 3d shapes via subspace
clustering,” Computer Graphics Forum, vol. 31, no. 5, pp. 1703-1713,
2012.

[4] S. Xiong, J. Zhang, J. Zheng, J. Cai, and L. Liu, “Robust surface
reconstruction via dictionary learning,” ACM Trans. Graph., vol. 33,
no. 6, pp. 201:1-201:12, Nov. 2014.

[5] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via lo gradient
minimization,” ACM Trans. Graph., vol. 30, no. 6, pp. 174:1-174:12,
Dec. 2011.

[6] L. He and S. Schaefer, “Mesh denoising via lp minimization,” ACM
Trans. Graph., vol. 32, no. 4, pp. 64:1-64:8, Jul. 2013.

[71 H. Zhang, C. Wu, J. Zhang, and J. Deng, “Variational mesh denoising
using total variation and piecewise constant function space,” Visualiza-
tion and Computer Graphics, IEEE Transactions on, vol. 21, no. 7, pp.
873-886, Jul. 2015.

[8] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, “Parameterization-
free projection for geometry reconstruction,” ACM Trans. Graph.,
vol. 26, no. 3, Jul. 2007.

[9]1 H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, “Consolidation
of unorganized point clouds for surface reconstruction,” ACM Trans.
Graph., vol. 28, no. 5, pp. 176:1-176:7, Dec. 2009.

[10] B. H. Le and Z. Deng, “Smooth skinning decomposition with rigid
bones,” ACM Trans. Graph., vol. 31, no. 6, pp. 199:1-199:10, Nov.
2012.

[11] ——, “Two-layer sparse compression of dense-weight blend skinning,”
ACM Trans. Graph., vol. 32, no. 4, pp. 124:1-124:10, Jul. 2013.

[12] ——, “Robust and accurate skeletal rigging from mesh sequences,” ACM
Trans. Graph., vol. 33, no. 4, pp. 84:1-84:10, Jul. 2014.

[13] J. Digne, R. Chaine, and S. Valette, “Self-similarity for accurate com-
pression of point sampled surfaces,” Computer Graphics Forum, vol. 33,
no. 2, pp. 155-164, 2014.

[14] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: Design of dictionaries
for sparse representation,” in IN: PROCEEDINGS OF SPARS05, 2005,
pp. 9-12.

107 %107

— 0
£ 10 2 | ~ii—
-
< 0 2. 2 0o 30 < 0 272 0 2

“
|
|

o
)
N
o
N
=)
N
=3
@
S
o
S
S
o

%10 %10

@
u
[

=)
[
0
=3
N

=)

N

0
=3

height
[EENCY
883
1
: u
height
o5
oo
[EcY
N

%1073 grid

o

S

S
o

|

%103

|

=)
N
N
=)
[N

height

=)

height
S o
o

RN
&3 o

=)
=)
)
S

[NENEC
w
ak

\\

N

W N =

S oo

m

o
[
S
o
=)
N
S
w
=3

=)

[NENCIN y
N

[N
&3S o

N
N
=)
=)
N
S
w
=3

=

Fig. 4. Atoms from the learned dictionaries. The first column shows the
dictionary atoms of the sphere model, and the second column shows the
dictionary atoms of the bumpy sphere model. From (a) to (c) show three atoms
of the dictionary with 196, 74 and 38 patches and 0.3, 0.5 and 0.7 size of patch
sets, respectively. From (d) to (f) show three atoms of the dictionary with 227,
79 and 45 patches and 0.3, 0.5 and 0.7 size of patch sets, respectively. The
right side in a plot shows color coding for the left patches. Blue to yellow
indicates low to high value.
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Fig. 5. Generation of rotating patches from a sphere and a bumpy sphere
model. The first row shows example patches from the sphere, and the second
row shows patch samples from the bumpy sphere.
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Fig. 7. Atoms of a dictionary with mixed patch sets. In (a), the four biggest
singular values and patches, which indicate the four biggest eigenvalues are
shown. A patch set is created by mixing 0.5 and 0.7 size of patch sets from
the sphere model. (b) shows the atoms of a learned dictionary with mixing
two patch sets from the bumpy sphere model. We mixed 0.5 and 0.7 size of
patch sets. And (c) shows the atoms of a learned dictionary with mixing 0.3
size of patches from the sphere and bumpy sphere models.



