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Abstract

The goal of this project was to create an augmented re-
ality chess game. We used two cameras - an RGB-D camera
and a thermal camera. The RGB camera is used to track a
paper checkerboard with augmented reality markers which
are used to estimate the pose of the camera. The video with
the resulting camera matrix are used by OpenGL to aug-
ment the video with the virtual game objects. We use a ther-
mal camera for the detection of the user input.

1. Introduction
Augmented reality (AR) is a live direct or indirect view

of a physical, real-world environment whose elements are
augmented by computer-generated sensory input such as
sound, video or graphics.

1.1. Motivation

On September 27, 1998 a yellow line appeared
across the gridiron during an otherwise ordinary
football game between the Cincinnati Bengals
and the Baltimore Ravens. It had been added by
a computer that analyzed the camera’s position
and the shape of the ground in real-time in or-
der to overlay thin yellow strip onto the field. The
line marked marked the position of the next first-
down, but it also marked the beginning of a new
era of computer vision in live sports, from com-
puterized pitch analysis in baseball to automatic
line-refs in tennis.

Augmented and Virtual Reality have come a long way
since then and products such as Microsoft Kinect, Google
Glass or the yet-to-be-released Occulus Rift or Microsoft
Hololens have amazed the world. We chose this project in
pursuit of understanding the challenges that have to be over-
come in augmented reality and user interface engineering.
Our goal was to create a simple augmented reality chess
game while exploring the possibilities of augmented real-
ity combined with real-life object interfacing through touch

detection with a low-tech infrared camera on arbitrary sur-
faces.

1.2. Related work

For simpler augmented reality applications, such as our
chess game, there is quite a simple way to accurately and
robustly track the camera poses in real-time - augmented re-
ality markers. These markers consist of an easily detectable
square with a specific pattern inside that helps make the
pose estimation accurate. In our project, we used Aruco
[4] library which is a lightweight library based on OpenCV
[5]. It defines its own set of markers and easy-to-use camera
pose estimation framework. The outputted extrinsic camera
parameters in combination with the camera calibration ma-
trix can be passed into a rendering engine, which can then
augment the video stream with additional virtual geometry.

Research on user input detection using thermal cameras
has been done before. In [2] they show how to exploit
stereo-like setup of an RGB and a thermal camera. The
detection of the user input is made easy as when the user
touches the interface-object, he transfers heat from his fin-
gers onto the surface of the object. These thermal spikes
are easily detectable by blob detectors. On the assumption
that the geometry of the object used for infrared input de-
tection is known, provided an accurate 3D object tracking
(and pose estimation), the detected user input points can be
back-projected into 3D space, intersected with the interface-
object surface, providing the 3D coordinates of the touch,
which can be used by the application.

2. The problem decomposed
This section describes all the key problems that we had

to solve in order to implement our game.

2.1. Preprocessing

The first step of creating our augmented reality applica-
tion is to calibrate the cameras. Calibrating an RGB camera
is easy. However, calibrating a low resolution (64x64) IR
camera poses a challenge as the standard checkerboard pat-
tern is not visible in the IR image. For this reason, we cut
out the white parts of the checkerboard and taped it to a
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(a) RGB image of our calibration setup

(b) thermal image of our calibration setup

Figure 1: Calibration setup

warm screen. You can see the results of our manual work
in Fig. 1. Because of the low resolution of the IR image
(which is further reduced by a broken column and a brighter
region on the right side of the broken column), we have not
been able to estimate the initial rigid motion transform from
camera to camera accurately.

2.2. Tracking and Pose Estimation

Another problem to tackle is the checkerboard detection
with pose estimation. We were considering mulitple possi-
bilities. At first we wanted to assume that out camera will
be static. Then we would detect standard 8x8 checkerboard
pattern to estimate the pose just once in program initializa-
tion stage. However, this simple approach would not be
enough as the slightest movement of the camera or checker-
board would invalidate the camera pose and the virtual ge-
ometry would not be rendered in the right place. Therefore
we decided to use a library for augmented reality - Aruco [4]
, which uses a special set of augmented reality markers. The
marker consists of a square border and a rotation-invariant
pattern inside, which encodes the marker’s ID. These mark-
ers make it easy to estimate the pose. For the detailed de-

(a) A single Aruco marker

(b) The scheme of detection of markers on one board

(c) Board with simple graphics rendered over it using the correct pose
estimation

Figure 2: Aruco workflow scheme

scription of the algorithm, please refer to Aruco website.
As our cameras are taped together creating a stereo setup,
by knowing the pose of the RGB camera and the rigid mo-
tion transform from the RGB camera to the IR camera, we
can compute the pose of the IR camera.

3
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2.3. Input Detection

To detect the residual heat resulting from the user touch-
ing the board we use OpenCV blob detector. We filter the
detected blobs by heat (pixel value) and by circularity. We
have been able to tweak the parameters in such a manner
that we get no false detections. In other words, only the
slightly brighter touched spot gets detected and not the hand
or other body parts which are much warmer and are not of
circular shape. Therefore, we did not have to use the depth
data from Kinect (as was initially planned), which is a very
good result. Given IR camera intrinsics and extrinsics we
backproject the detected point into 3D space and intersect
the resulting ray with the chessboard located on the xy-
plane. Then we can easily obtain the chess coordinates of
the touched square.

2.4. Occlusions

For more realistic AR effect we also employ occlusion
detection. We get an occlusion mask computed by Aruco.
Unfortunately, the occlusion mask is very noisy and unus-
able for our purposes. Therefore, we exploit image opening
to remove the noise (Fig. 4). Afterwards we use the mask
to extract the hand and prevent the virtual object to be ren-
dered over the occluding hand.

2.5. Result

We get an interactive 3D augmented reality chess game,
which can be played against a computer AI with visually
pleasing figure animations. The input detection works well
without detecting false positives without the need of depth
information for input validation. The pose estimation is
very stable and holds even when large part of the board is
occluded by the player. As a result the camera can move
freely around the checkerboard and the virtual geometry
stays in the right place. The only reason which prevents our
game from being playable is the inaccurate thermal camera
calibration and its initial pose estimation. Given a better IR
camera and a proper accurate stereo calibration, our game
is ready to be played.

3. Application Details

This section describes the key components of our fi-
nal application. Appendix A describes in detail the ini-
tial project proposal, changes that have been made, techni-
cal issues that have been encountered as well as the whole
progress.

3.1. Overview

As our game runs under ROS on Ubuntu it, consists of
several nodes described in the following subsections. Most
of our coding is done in Python, some in C++. Our appli-

(a) Noisy occlusion mask

(b) Denoised occlusion mask

Figure 3: An occlusion mask example

cation runs in real-time. PC without a GPU or the Odroid
device might have a lower (but still real-time) framerate.

3.2. Main Game Node

Main game node is a python script. It initiates the game
engine, sets the engine’s projection matrix from the calibra-
tion of the RGB camera and then keeps receiving all the data
processes them and passing them to the game engine. The
description of the most important parts of the node follows:

• IR listener: This listener receives the IR image data.
As our IR sensor has only resolution of 64x64, the im-
age is first upsampled to make it usable for the input
detection. To detect the residual heat resulting from the
user touching the board we use OpenCV blob detector.
We filter the detected blobs by heat (pixel value) and

4
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(a) Chess game rendered on an Aruco board.

(b) Game with a hand occluding the virtual objects. Note that the
virtual objects indeed do not get rendered over the hand.

Figure 4: Augmented reality chess game

by circularity. We have been able to tweak the param-
eters in such a manner that we get no false detections.
In other words, only the slightly brighter touched spot
gets detected and not the hand or other body parts
which are much warmer and are not of circular shape.
Therefore, we did not have to use the depth data from
Kinect (as was initially planned), which is a very good
result. Our RGB and IR cameras are fixed together,
which means there is a rigid motion transform between
them and since we know the extrinsics of the RGB
camera, we can also compute the extrinsics of the IR
camera. Given an accurate calibration of the IR cam-
era, we can then easily backproject the detected in-
put points, intersect the resulting ray with the checker-
board plane and therefore compute the 2D coordinates
on the plane. These are then passed to the game en-
gine.

• RGB listener: This listener receives the rectified
RGB images from the OpenNI node and passes them to

our game engine, where the images are used as a back-
ground over which the virtual objects are rendered.

• Occlusion mask listener: This listener receives the
occlusion mask and passes it to the game engine. The
occlusion mask is used to determine, where not to ren-
der the virtual objects. This creates a realistic effect
that when a player’s hand occludes the board, the vir-
tual objects get occluded as well.

• Pose listener: This listener receives the extrinsics of
our camera from the Ar-Sys node and passes them to
our game engine, where it is used as the model view
matrix for OpenGL.

Relevant file: listener.py
Coded by: Radek Danecek

3.3. Ar-Sys: Aruco ROS node

For the checkerboard tracking and pose estimation we
use Ar-Sys [3]. It is a wrapper around Aruco library for
ROS. It is used to track a special checkerboard filled with
augmented reality markers. We have extended this wrap-
per for the purposes of this project to enable the support
of the Aruco’s so called ”Highly Reliable Markers”, which
provide more stable pose estimation and also support the
creation of the occlusion mask. The occlusion mask is
computed by an Aruco function which uses a simple back-
ground subtraction algorithm. As the occlusion mask from
the Aruco library contained many holes, we perform an im-
age opening operation on it to fill the gaps.

Both camera pose and the occlusion masks are streamed
in real-time to the main game node. By employing this li-
brary, we can move our camera freely around the board and
the virtual objects get rendered exactly at the right place,
which looks visually pleasing. Therefore, we have com-
pleted a secondary objective of our project, as at first we
wanted to create our game with static camera only.

Relevant files: single board.cpp,
single board occlusion.cpp,
single board kinect.launch,
single board kinect occlusion.launch

3.4. Game Engine

The graphics for the argument reality chess are com-
pletely written in python with OpenGL and GLut. For the
chess figure models exist two options. The first one is to
use only primitives like spheres, cones or other quadratics
for figure modeling. The huge advantage is that this objects
are natively supported by openGL and they improve the ren-
dering in terms of FPS. However if the user has a graphics
card he could use the second option, which load the figures
as standard obj files. This files contain a set of verticies,
faces, normals and texture coordinates, which are loaded in

5
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the initialization of the game. Optional it is possible to as-
sign a material file (mtl) to an obj file. These files contain
detailed information about the material properties of parts
of the model. They can for example specify the texture, the
ambient, specular or diffuse color.

Another feature is the GLut context menu, which allows
the user to change the rendering properties during the run-
time. For example it is possible to toggle shadows or basic
animations.

To create the best possible AR effect we used the 3 fol-
lowing steps. At first the RGB frame is rendered as an or-
thogonal projection to get the video inside rendering. After
that we render the checkerboard, and the figures in the cur-
rent game state.

To create a good AR effect we update the openGL model
view and projection matrix every time the listener receives a
new frame. This gives us the possibility to move the camera
freely around the board. In the last step we use our occlu-
sion mask to render the players hand as an RGBA over the
figures as a third layer.

The whole chess logic is computed by the open source
chess engine Sunfish [1]. The engine also checks if a given
move is a valid step and computes the next move for the
computer AI opponent.

Another feature of the engine is that, the game is
playable even if no thermal camera exists. It is possible
to use the mouse as input device and click directly on the
2 squares to define a move. The 2D screen coordinates are
unprojected using the model, view and projection matrix to
3D space, after that we now the structures of the checker-
board in the xy plane and can easily detected the click or
touched square.

Relevant file: GameNoLogic.py
Coded by: Alex Lelidis

3.5. Odroid/IR camera node

For this project we have received a small low-tech IR
sensor with 64x64 resolution. It runs on Odroid with ROS
and Ubuntu. Together with the camera and the Odroid, we
have also been provided a ROS publisher node, from which
we read the IR image data.

3.6. OpenNI node

ROS node for standard OpenNI driver for Microsoft
Kinect. It publishes RGB and depth data.

4. Conclusion
We have created a simple augmented reality chess game

that runs in real time and uses thermal camera for input de-
tection and Aruco library for pose estimation and checker-
board tracking. We have successfully applied and extended
our knowledge in Computer Vision and Computer Graph-

ics. We were happy that we could get our hands on quite re-
cent hardware (the IR camera) and also extended our range
of technical skills (such as working with ROS or OpenCV)
and we are pleased with the overall result.

5. Appendix A: Progress
This section describes everything we have done from the

initial plans, the changes we have made and our progress
throughout the semester.

5.1. Project Proposal and Initial plans

The initial project proposal has been provided with this
document.

5.2. Setting up the project

The ROS and OpenCV shit

5.3. Before midterm

Work on graphics and checkerboard tracking and pose
estimation.

5.4. After midterm

Transition to highly reliable markers. Occlusion mask.
Obtaining the thermal camera.

5.5. Final push

Problems with camera calibration and pose estimation.
Fucking camera breaks all the time and stuff.

6. Appendix B: Installation
6.1. AugmentedRealityChess

The installation is tested on Ubuntu 14.04.

6.1.1 Install OpenNI

This is required for the kinect interface
sudo apt-get install git-core
cmake freeglut3-dev pkg-config
build-essential libxmu-dev libxi-dev
libusb-1.0-0-dev doxygen graphviz
mono-complete
Now clone the code and set it up
$ mkdir ˜/kinect
$ cd ˜/kinect
$ git clone
https://github.com/OpenNI/OpenNI.git

This thing has a bizarre install scheme. Do the follow-
ing:
cd OpenNI/Platform/Linux/CreateRedist/
chmod +x RedistMaker
./RedistMaker Now this creates some distribution.
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One of the two following cases should work. Else just look
for a damn compiled binary, extract it and install it.
Case 1:
$ cd Final
$ tar -xjf OpenNI-Bin-Dev-Linux*bz2
$ cd OpenNI- ...
$ sudo ./install.sh

6.1.2 Install SensorKinect

Yet another library for the Kinect $ cd ˜/kinect/
$ git clone
git://github.com/ph4m/SensorKinect.git
Once you have the lib, go ahead and compile it in the same
bizarre manner as OpenNI (well atleast they are consistent).
$ cd
SensorKinect/Platform/Linux/CreateRedist/
$ chmod +x RedistMaker
$ ./RedistMaker
Done compiling. Now install this.
$ cd Final
$ tar -xjf Sensor ...
$ cd Sensor ...
$ sudo ./install.sh

This thing has a bizarre install scheme. Do the follow-
ing:
cd OpenNI/Platform/Linux/CreateRedist/
chmod +x RedistMaker
./RedistMaker Now this creates some distribution.
One of the two following cases should work. Else just look
for a damn compiled binary, extract it and install it.
Case 1:
$ cd Final
$ tar -xjf OpenNI-Bin-Dev-Linux*bz2
$ cd OpenNI- ...
$ sudo ./install.sh

6.1.3 Set up OpenCV

These steps have been tested for Ubuntu 14.04 but should
work with other distros as well.
Required Packages

1. GCC 4.4.x or later

2. CMake 2.8.7 or higher

3. Git

4. GTK+2.x or higher, including headers (libgtk2.0-dev)

5. pkg-config 5. Python 2.6 or later and Numpy 1.5
or later with developer packages (python-dev, python-
numpy)

6. ffmpeg or libav development packages: libavcodec-
dev, libavformat-dev, libswscale-dev

7. [optional] libtbb2 libtbb-dev

8. [optional] libdc1394 2.x

9. [optional] libjpeg-dev, libpng-dev, libtiff-dev,
libjasper-dev, libdc1394-22-dev The packages
can be installed using a terminal and the following
commands or by using Synaptic Manager:

[compiler] sudo apt-get install
build-essential
[required] sudo apt-get install cmake git
libgtk2.0-dev pkg-config libavcodec-dev
libavformat-dev libswscale-dev
[optional] sudo apt-get install python-dev
python-numpy libtbb2 libtbb-dev
libjpeg-dev libpng-dev libtiff-dev
libjasper-dev libdc1394-22-dev

This thing has a bizarre install scheme. Do the follow-
ing:
cd OpenNI/Platform/Linux/CreateRedist/
chmod +x RedistMaker
./RedistMaker Now this creates some distribution.
One of the two following cases should work. Else just look
for a damn compiled binary, extract it and install it.
Case 1:
$ cd Final
$ tar -xjf OpenNI-Bin-Dev-Linux*bz2
$ cd OpenNI- ...
$ sudo ./install.sh

Getting OpenCV Source Code

You can use the OpenCV versio 2.4.9.
For example
cd ˜/<my working directory>

git clone
https://github.com/Itseez/opencv.git
git clone
https://github.com/Itseez/opencv contrib.git

Building OpenCV 2.4.9 from Source Using CMake

1. Create a temporary directory, which we denote as
, where you want to put the generated Makefiles,
project files as well the object files and output binaries
and enter there. For example
cd ˜/opencv2.4.9
mkdir build
cd build

7
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2. Configuring. Run cmake [some optional parameters]
path to the OpenCV source directory
For example
cmake -D CMAKE BUILD TYPE=Release -D
CMAKE INSTALL PREFIX=/usr/local .. or
cmake-gui

• set full path to OpenCV source code, e.g.
/home/user/opencv

• set full path to , e.g. /home/user/opencv/build

• set optional parameters

• run: “Configure”

• run: “Generate”

3. Description of some parameters

• build type: CMAKE BUILD TYPE=Release Debug

• to build with modules from opencv contrib set
OPENCV EXTRA MODULES PATH to

• set BUILD DOCS for building documents

• set BUILD EXAMPLES to build all examples

4. Building python. Set the following python parameters:

• PYTHON2(3) EXECUTABLE =

• PYTHON INCLUDE DIR = /usr/include/python

• PYTHON INCLUDE DIR2 = /usr/include/x86 64-
linux-gnu/python

• PYTHON LIBRARY = /usr/lib/x86 64-linux-
gnu/libpython.so

• PYTHON2(3) NUMPY INCLUDE DIRS =
/usr/lib/python/dist-packages/numpy/core/include/

5. Build. From build directory execute make, recomend
to do it in several threads For example
make -j7 # runs 7 jobs in parallel

6. sudo make install

6.1.4 Install Ros

1. Installation
1.1. Configure your Ubuntu repositories Configure
your Ubuntu repositories to allow “restricted,” “uni-
verse,” and “multiverse.” You can follow the Ubuntu
guide for instructions on doing this.

1.2. Setup your sources.list Setup your com-
puter to accept software from packages.ros.org.
ROS Jade ONLY supports Trusty (14.04),
Utopic (14.10) and Vivid (15.04) for de-
bian packages.sudo sh -c echo "deb
http://packages.ros.org/ros/ubuntu
$(lsb release -sc) main" >
/etc/apt/sources.list.d/ros-latest.list
1.3. Set up your keys sudo
apt-key adv --keyserver
hkp://pool.sks-keyservers.net
--recv-key 0xB01FA116
1.4. Installation First, make sure your Debian package
index is up-to-date: sudo apt-get update If
you are using Ubuntu Trusty 14.04.2 and experience
dependency issues during the ROS installation, you
may have to install some additional system depen-
dencies. /! Do not install these packages if you are
using 14.04, it will destroy your X server:

sudo apt-get install
xserver-xorg-dev-lts-utopic
mesa-common-dev-lts-utopic
libxatracker-dev-lts-utopic
libopenvg1-mesa-dev-lts-utopic
libgles2-mesa-dev-lts-utopic
libgles1-mesa-dev-lts-utopic
libgl1-mesa-dev-lts-utopic
libgbm-dev-lts-utopic
libegl1-mesa-dev-lts-utopic ! Do not in-
stall the above packages if you are using 14.04, it will
destroy your X server! Alternatively, try installing just this
to fix dependency issues: sudo apt-get install
libgl1-mesa-dev-lts-utopic Desktop-Full In-
stall: (Recommended) : ROS, rqt, rviz, robot-generic
libraries, 2D/3D simulators, navigation and 2D/3D percep-
tion sudo apt-get install ros-jade-desktop-full or click here
Desktop Install: ROS, rqt, rviz, and robot-generic libraries
sudo apt-get install ros-jade-desktop
ROS-Base: (Bare Bones) ROS package, build, and com-
munication libraries. No GUI tools. sudo apt-get
install ros-jade-ros-base Individual Package:
You can also install a specific ROS package (replace
underscores with dashes of the package name): sudo
apt-get install ros-jade-PACKAGE e.g. sudo
apt-get install ros-jade-slam-gmapping
To find available packages, use: apt-cache search
ros-jade 1.5. Initialize rosdep Before you can use ROS,
you will need to initialize rosdep. rosdep enables you to
easily install system dependencies for source you want to
compile and is required to run some core components in
ROS. sudo rosdep init rosdep update
1.6. Environment setup It’s convenient if the ROS envi-
ronment variables are automatically added to your bash
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session every time a new shell is launched:
echo "source /opt/ros/jade/setup.bash"

>> ˜/.bashrc source ˜/.bashrc If you have
more than one ROS distribution installed, ˜/.bashrc must
only source the setup.bash for the version you are currently
using.

If you just want to change the environment of your cur-
rent shell, you can type:

source /opt/ros/jade/setup.bash
1.7. Getting rosinstall rosinstall is a frequently used
command-line tool in ROS that is distributed separately. It
enables you to easily download many source trees for ROS
packages with one command.

To install this tool on Ubuntu, run:
sudo apt-get install

python-rosinstall Build farm status The pack-
ages that you installed were built by ROS build farm.

6.1.5 Install ar sys

3D pose estimation ROS package using ArUco marker
boards. To install this package run git clone
https://github.com/coloss/ar sys.git

6.1.6 Install PyOpenGL

To be able to run the animations you new to have Py-
OpenGL, the quickest way to install it is using pip
$ pip install PyOpenGL
PyOpenGL accelerate

6.1.7 Set up Augmented Reality Chess

To run the source code properly a specific file structure is
needed.

1. Create a catkin workspace cd ˜; mkdir
˜/catkin ws

2. Clone the ros part of the implemen-
tation in this directory git clone
https://github.com/alexus37/ROSARCHESS.git

3. Clone the rendering part in an arbitary
folder and link the path in the file
catkin ws/src/kinect io/scripts/listener.py git
clone https://github.com/alexus37/
AugmentedRealityChess.git

4. Calibrate the Kinect camera using the ros CALI
BLA to create the a cali.yml file

5. Calibrate the IR camera and create the a cali.yml file

6.1.8 Run the game

1. Run the roscore roscore

2. Open a new terminal and run openNi to be able
to interact with the kinnect roslaunch openni
openi.launch

3. Open a new terminal and run ros arsys to be
able to track the markers roslaunch arsys
singleboardOcclusion

4. connecte via ssh to connect to the thermal camera.
shh px4@192.168.1.2

5. Also run the roscore on the IR cam roscore

6. Run the command rosrun px4 px4

7. Launch the video stream roslauch
leptonvideo leptonvideo

8. Open a new terminal on your machine and
run the listener roslaunch kinectio
kinectio.listner
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