
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

3DV
#****

3DV
#****

3DV 2014 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

LATEX Author Guidelines for 3DV Proceedings

Anonymous 3DV submission

Paper ID ****

Abstract

The goal of this project was to create an augmented re-
ality chess game. We used two cameras - an RGB-D camera
and a thermal camera. The RGB camera is used to track a
paper checkerboard with augmented reality markers which
are used to estimate the pose of the camera. The video with
the resulting camera matrix are used by OpenGL to aug-
ment the video with the virtual game objects. We use a ther-
mal camera for the detection of the user input.

1. Introduction
Augmented reality (AR) is a live direct or indirect view

of a physical, real-world environment whose elements are
augmented by computer-generated sensory input such as
sound, video or graphics.

1.1. Motivation

On September 27, 1998 a yellow line appeared
across the gridiron during an otherwise ordinary
football game between the Cincinnati Bengals
and the Baltimore Ravens. It had been added by
a computer that analyzed the camera’s position
and the shape of the ground in real-time in or-
der to overlay thin yellow strip onto the field. The
line marked marked the position of the next first-
down, but it also marked the beginning of a new
era of computer vision in live sports, from com-
puterized pitch analysis in baseball to automatic
line-refs in tennis.

Augmented and Virtual Reality have come a long way
since then and products such as Microsoft Kinect, Google
Glass or the yet-to-be-released Occulus Rift or Microsoft
Hololens have amazed the world. We chose this project in
pursuit of understanding the challenges that have to be over-
come in augmented reality and user interface engineering.
Our goal was to create a simple augmented reality chess
game while exploring the possibilities of augmented real-
ity combined with real-life object interfacing through touch

detection with a low-tech infrared camera on arbitrary sur-
faces.

1.2. Related work

For simpler augmented reality applications, such as our
chess game, there is quite a simple way to accurately and
robustly track the camera poses in real-time - augmented re-
ality markers. These markers consist of an easily detectable
square with a specific pattern inside that helps make the
pose estimation accurate. In our project, we used Aruco
[4] library which is a lightweight library based on OpenCV
[5]. It defines its own set of markers and easy-to-use camera
pose estimation framework. The outputted extrinsic camera
parameters in combination with the camera calibration ma-
trix can be passed into a rendering engine, which can then
augment the video stream with additional virtual geometry.

Research on user input detection using thermal cameras
has been done before. In [2] they show how to exploit
stereo-like setup of an RGB and a thermal camera. The
detection of the user input is made easy as when the user
touches the interface-object, he transfers heat from his fin-
gers onto the surface of the object. These thermal spikes
are easily detectable by blob detectors. On the assumption
that the geometry of the object used for infrared input de-
tection is known, provided an accurate 3D object tracking
(and pose estimation), the detected user input points can be
back-projected into 3D space, intersected with the interface-
object surface, providing the 3D coordinates of the touch,
which can be used by the application.

2. The problem decomposed
This section describes all the key problems that we had

to solve in order to implement our game.

2.1. Preprocessing

The first step of creating our augmented reality applica-
tion is to calibrate the cameras. Calibrating an RGB camera
is easy. However, calibrating a low resolution (64x64) IR
camera poses a challenge as the standard checkerboard pat-
tern is not visible in the IR image. For this reason, we cut
out the white parts of the checkerboard and taped it to a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3DV
#****

3DV
#****

3DV 2014 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) RGB image of our calibration setup

(b) thermal image of our calibration setup

Figure 1: Calibration setup

warm screen. You can see the results of our manual work
in Fig. 1. Because of the low resolution of the IR image
(which is further reduced by a broken column and a brighter
region on the right side of the broken column), we have not
been able to estimate the initial rigid motion transform from
camera to camera accurately.

2.2. Tracking and Pose Estimation

Another problem to tackle is the checkerboard detection
with pose estimation. We were considering mulitple possi-
bilities. At first we wanted to assume that out camera will
be static. Then we would detect standard 8x8 checkerboard
pattern to estimate the pose just once in program initializa-
tion stage. However, this simple approach would not be
enough as the slightest movement of the camera or checker-
board would invalidate the camera pose and the virtual ge-
ometry would not be rendered in the right place. Therefore
we decided to use a library for augmented reality - Aruco [4]
, which uses a special set of augmented reality markers. The
marker consists of a square border and a rotation-invariant
pattern inside, which encodes the marker’s ID. These mark-
ers make it easy to estimate the pose. For the detailed de-

(a) A single Aruco marker

(b) The scheme of detection of markers on one board

(c) Board with simple graphics rendered over it using the correct pose
estimation

Figure 2: Aruco workflow scheme

scription of the algorithm, please refer to Aruco website.
As our cameras are taped together creating a stereo setup,
by knowing the pose of the RGB camera and the rigid mo-
tion transform from the RGB camera to the IR camera, we
can compute the pose of the IR camera.

3

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3DV
#****

3DV
#****

3DV 2014 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2.3. Input Detection

To detect the residual heat resulting from the user touch-
ing the board we use OpenCV blob detector. We filter the
detected blobs by heat (pixel value) and by circularity. We
have been able to tweak the parameters in such a manner
that we get no false detections. In other words, only the
slightly brighter touched spot gets detected and not the hand
or other body parts which are much warmer and are not of
circular shape. Therefore, we did not have to use the depth
data from Kinect (as was initially planned), which is a very
good result. Given IR camera intrinsics and extrinsics we
backproject the detected point into 3D space and intersect
the resulting ray with the chessboard located on the xy-
plane. Then we can easily obtain the chess coordinates of
the touched square.

2.4. Occlusions

For more realistic AR effect we also employ occlusion
detection. We get an occlusion mask computed by Aruco.
Unfortunately, the occlusion mask is very noisy and unus-
able for our purposes. Therefore, we exploit image opening
to remove the noise (Fig. 4). Afterwards we use the mask
to extract the hand and prevent the virtual object to be ren-
dered over the occluding hand.

2.5. Result

We get an interactive 3D augmented reality chess game,
which can be played against a computer AI with visually
pleasing figure animations. The input detection works well
without detecting false positives without the need of depth
information for input validation. The pose estimation is
very stable and holds even when large part of the board is
occluded by the player. As a result the camera can move
freely around the checkerboard and the virtual geometry
stays in the right place. The only reason which prevents our
game from being playable is the inaccurate thermal camera
calibration and its initial pose estimation. Given a better IR
camera and a proper accurate stereo calibration, our game
is ready to be played.

3. Application Details

This section describes the key components of our fi-
nal application. Appendix A describes in detail the ini-
tial project proposal, changes that have been made, techni-
cal issues that have been encountered as well as the whole
progress.

3.1. Overview

As our game runs under ROS on Ubuntu it, consists of
several nodes described in the following subsections. Most
of our coding is done in Python, some in C++. Our appli-

(a) Noisy occlusion mask

(b) Denoised occlusion mask

Figure 3: An occlusion mask example

cation runs in real-time. PC without a GPU or the Odroid
device might have a lower (but still real-time) framerate.

3.2. Main Game Node

Main game node is a python script. It initiates the game
engine, sets the engine’s projection matrix from the calibra-
tion of the RGB camera and then keeps receiving all the data
processes them and passing them to the game engine. The
description of the most important parts of the node follows:

• IR listener: This listener receives the IR image data.
As our IR sensor has only resolution of 64x64, the im-
age is first upsampled to make it usable for the input
detection. To detect the residual heat resulting from the
user touching the board we use OpenCV blob detector.
We filter the detected blobs by heat (pixel value) and

4

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

3DV
#****

3DV
#****

3DV 2014 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Chess game rendered on an Aruco board.

(b) Game with a hand occluding the virtual objects. Note that the
virtual objects indeed do not get rendered over the hand.

Figure 4: Augmented reality chess game

by circularity. We have been able to tweak the param-
eters in such a manner that we get no false detections.
In other words, only the slightly brighter touched spot
gets detected and not the hand or other body parts
which are much warmer and are not of circular shape.
Therefore, we did not have to use the depth data from
Kinect (as was initially planned), which is a very good
result. Our RGB and IR cameras are fixed together,
which means there is a rigid motion transform between
them and since we know the extrinsics of the RGB
camera, we can also compute the extrinsics of the IR
camera. Given an accurate calibration of the IR cam-
era, we can then easily backproject the detected in-
put points, intersect the resulting ray with the checker-
board plane and therefore compute the 2D coordinates
on the plane. These are then passed to the game en-
gine.

• RGB listener: This listener receives the rectified
RGB images from the OpenNI node and passes them to

our game engine, where the images are used as a back-
ground over which the virtual objects are rendered.

• Occlusion mask listener: This listener receives the
occlusion mask and passes it to the game engine. The
occlusion mask is used to determine, where not to ren-
der the virtual objects. This creates a realistic effect
that when a player’s hand occludes the board, the vir-
tual objects get occluded as well.

• Pose listener: This listener receives the extrinsics of
our camera from the Ar-Sys node and passes them to
our game engine, where it is used as the model view
matrix for OpenGL.

Relevant file: listener.py
Coded by: Radek Danecek

3.3. Ar-Sys: Aruco ROS node

For the checkerboard tracking and pose estimation we
use Ar-Sys [3]. It is a wrapper around Aruco library for
ROS. It is used to track a special checkerboard filled with
augmented reality markers. We have extended this wrap-
per for the purposes of this project to enable the support
of the Aruco’s so called ”Highly Reliable Markers”, which
provide more stable pose estimation and also support the
creation of the occlusion mask. The occlusion mask is
computed by an Aruco function which uses a simple back-
ground subtraction algorithm. As the occlusion mask from
the Aruco library contained many holes, we perform an im-
age opening operation on it to fill the gaps.

Both camera pose and the occlusion masks are streamed
in real-time to the main game node. By employing this li-
brary, we can move our camera freely around the board and
the virtual objects get rendered exactly at the right place,
which looks visually pleasing. Therefore, we have com-
pleted a secondary objective of our project, as at first we
wanted to create our game with static camera only.

Relevant files: single board.cpp,
single board occlusion.cpp,
single board kinect.launch,
single board kinect occlusion.launch

3.4. Game Engine

The graphics for the argument reality chess are com-
pletely written in python with OpenGL and GLut. For the
chess figure models exist two options. The first one is to
use only primitives like spheres, cones or other quadratics
for figure modeling. The huge advantage is that this objects
are natively supported by openGL and they improve the ren-
dering in terms of FPS. However if the user has a graphics
card he could use the second option, which load the figures
as standard obj files. This files contain a set of verticies,
faces, normals and texture coordinates, which are loaded in

5

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

3DV
#****

3DV
#****

3DV 2014 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

the initialization of the game. Optional it is possible to as-
sign a material file (mtl) to an obj file. These files contain
detailed information about the material properties of parts
of the model. They can for example specify the texture, the
ambient, specular or diffuse color.

Another feature is the GLut context menu, which allows
the user to change the rendering properties during the run-
time. For example it is possible to toggle shadows or basic
animations.

To create the best possible AR effect we used the 3 fol-
lowing steps. At first the RGB frame is rendered as an or-
thogonal projection to get the video inside rendering. After
that we render the checkerboard, and the figures in the cur-
rent game state.

To create a good AR effect we update the openGL model
view and projection matrix every time the listener receives a
new frame. This gives us the possibility to move the camera
freely around the board. In the last step we use our occlu-
sion mask to render the players hand as an RGBA over the
figures as a third layer.

The whole chess logic is computed by the open source
chess engine Sunfish [1]. The engine also checks if a given
move is a valid step and computes the next move for the
computer AI opponent.

Another feature of the engine is that, the game is
playable even if no thermal camera exists. It is possible
to use the mouse as input device and click directly on the
2 squares to define a move. The 2D screen coordinates are
unprojected using the model, view and projection matrix to
3D space, after that we now the structures of the checker-
board in the xy plane and can easily detected the click or
touched square.

Relevant file: GameNoLogic.py
Coded by: Alex Lelidis

3.5. Odroid/IR camera node

For this project we have received a small low-tech IR
sensor with 64x64 resolution. It runs on Odroid with ROS
and Ubuntu. Together with the camera and the Odroid, we
have also been provided a ROS publisher node, from which
we read the IR image data.

3.6. OpenNI node

ROS node for standard OpenNI driver for Microsoft
Kinect. It publishes RGB and depth data.

4. Conclusion
We have created a simple augmented reality chess game

that runs in real time and uses thermal camera for input de-
tection and Aruco library for pose estimation and checker-
board tracking. We have successfully applied and extended
our knowledge in Computer Vision and Computer Graph-

ics. We were happy that we could get our hands on quite re-
cent hardware (the IR camera) and also extended our range
of technical skills (such as working with ROS or OpenCV)
and we are pleased with the overall result.

5. Appendix A: Progress
This section describes everything we have done from the

initial plans, the changes we have made and our progress
throughout the semester.

5.1. Project Proposal and Initial plans

The initial project proposal has been provided with this
document.

5.2. Setting up the project

The ROS and OpenCV shit

5.3. Before midterm

Work on graphics and checkerboard tracking and pose
estimation.

5.4. After midterm

Transition to highly reliable markers. Occlusion mask.
Obtaining the thermal camera.

5.5. Final push

Problems with camera calibration and pose estimation.
Fucking camera breaks all the time and stuff.

6. Appendix B: Installation
6.1. AugmentedRealityChess

The installation is tested on Ubuntu 14.04.

6.1.1 Install OpenNI

This is required for the kinect interface
sudo apt-get install git-core
cmake freeglut3-dev pkg-config
build-essential libxmu-dev libxi-dev
libusb-1.0-0-dev doxygen graphviz
mono-complete
Now clone the code and set it up
$ mkdir ˜/kinect
$ cd ˜/kinect
$ git clone
https://github.com/OpenNI/OpenNI.git

This thing has a bizarre install scheme. Do the follow-
ing:
cd OpenNI/Platform/Linux/CreateRedist/
chmod +x RedistMaker
./RedistMaker Now this creates some distribution.

6

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

3DV
#****

3DV
#****

3DV 2014 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

One of the two following cases should work. Else just look
for a damn compiled binary, extract it and install it.
Case 1:
$ cd Final
$ tar -xjf OpenNI-Bin-Dev-Linux*bz2
$ cd OpenNI- ...
$ sudo ./install.sh

6.1.2 Install SensorKinect

Yet another library for the Kinect $ cd ˜/kinect/
$ git clone
git://github.com/ph4m/SensorKinect.git
Once you have the lib, go ahead and compile it in the same
bizarre manner as OpenNI (well atleast they are consistent).
$ cd
SensorKinect/Platform/Linux/CreateRedist/
$ chmod +x RedistMaker
$./RedistMaker
Done compiling. Now install this.
$ cd Final
$ tar -xjf Sensor ...
$ cd Sensor ...
$ sudo ./install.sh

This thing has a bizarre install scheme. Do the follow-
ing:
cd OpenNI/Platform/Linux/CreateRedist/
chmod +x RedistMaker
./RedistMaker Now this creates some distribution.
One of the two following cases should work. Else just look
for a damn compiled binary, extract it and install it.
Case 1:
$ cd Final
$ tar -xjf OpenNI-Bin-Dev-Linux*bz2
$ cd OpenNI- ...
$ sudo ./install.sh

6.1.3 Set up OpenCV

These steps have been tested for Ubuntu 14.04 but should
work with other distros as well.
Required Packages

1. GCC 4.4.x or later

2. CMake 2.8.7 or higher

3. Git

4. GTK+2.x or higher, including headers (libgtk2.0-dev)

5. pkg-config 5. Python 2.6 or later and Numpy 1.5
or later with developer packages (python-dev, python-
numpy)

6. ffmpeg or libav development packages: libavcodec-
dev, libavformat-dev, libswscale-dev

7. [optional] libtbb2 libtbb-dev

8. [optional] libdc1394 2.x

9. [optional] libjpeg-dev, libpng-dev, libtiff-dev,
libjasper-dev, libdc1394-22-dev The packages
can be installed using a terminal and the following
commands or by using Synaptic Manager:

[compiler] sudo apt-get install
build-essential
[required] sudo apt-get install cmake git
libgtk2.0-dev pkg-config libavcodec-dev
libavformat-dev libswscale-dev
[optional] sudo apt-get install python-dev
python-numpy libtbb2 libtbb-dev
libjpeg-dev libpng-dev libtiff-dev
libjasper-dev libdc1394-22-dev

This thing has a bizarre install scheme. Do the follow-
ing:
cd OpenNI/Platform/Linux/CreateRedist/
chmod +x RedistMaker
./RedistMaker Now this creates some distribution.
One of the two following cases should work. Else just look
for a damn compiled binary, extract it and install it.
Case 1:
$ cd Final
$ tar -xjf OpenNI-Bin-Dev-Linux*bz2
$ cd OpenNI- ...
$ sudo ./install.sh

Getting OpenCV Source Code

You can use the OpenCV versio 2.4.9.
For example
cd ˜/<my working directory>

git clone
https://github.com/Itseez/opencv.git
git clone
https://github.com/Itseez/opencv contrib.git

Building OpenCV 2.4.9 from Source Using CMake

1. Create a temporary directory, which we denote as
, where you want to put the generated Makefiles,
project files as well the object files and output binaries
and enter there. For example
cd ˜/opencv2.4.9
mkdir build
cd build

7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

3DV
#****

3DV
#****

3DV 2014 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2. Configuring. Run cmake [some optional parameters]
path to the OpenCV source directory
For example
cmake -D CMAKE BUILD TYPE=Release -D
CMAKE INSTALL PREFIX=/usr/local .. or
cmake-gui

• set full path to OpenCV source code, e.g.
/home/user/opencv

• set full path to , e.g. /home/user/opencv/build

• set optional parameters

• run: “Configure”

• run: “Generate”

3. Description of some parameters

• build type: CMAKE BUILD TYPE=Release Debug

• to build with modules from opencv contrib set
OPENCV EXTRA MODULES PATH to

• set BUILD DOCS for building documents

• set BUILD EXAMPLES to build all examples

4. Building python. Set the following python parameters:

• PYTHON2(3) EXECUTABLE =

• PYTHON INCLUDE DIR = /usr/include/python

• PYTHON INCLUDE DIR2 = /usr/include/x86 64-
linux-gnu/python

• PYTHON LIBRARY = /usr/lib/x86 64-linux-
gnu/libpython.so

• PYTHON2(3) NUMPY INCLUDE DIRS =
/usr/lib/python/dist-packages/numpy/core/include/

5. Build. From build directory execute make, recomend
to do it in several threads For example
make -j7 # runs 7 jobs in parallel

6. sudo make install

6.1.4 Install Ros

1. Installation
1.1. Configure your Ubuntu repositories Configure
your Ubuntu repositories to allow “restricted,” “uni-
verse,” and “multiverse.” You can follow the Ubuntu
guide for instructions on doing this.

1.2. Setup your sources.list Setup your com-
puter to accept software from packages.ros.org.
ROS Jade ONLY supports Trusty (14.04),
Utopic (14.10) and Vivid (15.04) for de-
bian packages.sudo sh -c echo "deb
http://packages.ros.org/ros/ubuntu
$(lsb release -sc) main" >
/etc/apt/sources.list.d/ros-latest.list
1.3. Set up your keys sudo
apt-key adv --keyserver
hkp://pool.sks-keyservers.net
--recv-key 0xB01FA116
1.4. Installation First, make sure your Debian package
index is up-to-date: sudo apt-get update If
you are using Ubuntu Trusty 14.04.2 and experience
dependency issues during the ROS installation, you
may have to install some additional system depen-
dencies. /! Do not install these packages if you are
using 14.04, it will destroy your X server:

sudo apt-get install
xserver-xorg-dev-lts-utopic
mesa-common-dev-lts-utopic
libxatracker-dev-lts-utopic
libopenvg1-mesa-dev-lts-utopic
libgles2-mesa-dev-lts-utopic
libgles1-mesa-dev-lts-utopic
libgl1-mesa-dev-lts-utopic
libgbm-dev-lts-utopic
libegl1-mesa-dev-lts-utopic ! Do not in-
stall the above packages if you are using 14.04, it will
destroy your X server! Alternatively, try installing just this
to fix dependency issues: sudo apt-get install
libgl1-mesa-dev-lts-utopic Desktop-Full In-
stall: (Recommended) : ROS, rqt, rviz, robot-generic
libraries, 2D/3D simulators, navigation and 2D/3D percep-
tion sudo apt-get install ros-jade-desktop-full or click here
Desktop Install: ROS, rqt, rviz, and robot-generic libraries
sudo apt-get install ros-jade-desktop
ROS-Base: (Bare Bones) ROS package, build, and com-
munication libraries. No GUI tools. sudo apt-get
install ros-jade-ros-base Individual Package:
You can also install a specific ROS package (replace
underscores with dashes of the package name): sudo
apt-get install ros-jade-PACKAGE e.g. sudo
apt-get install ros-jade-slam-gmapping
To find available packages, use: apt-cache search
ros-jade 1.5. Initialize rosdep Before you can use ROS,
you will need to initialize rosdep. rosdep enables you to
easily install system dependencies for source you want to
compile and is required to run some core components in
ROS. sudo rosdep init rosdep update
1.6. Environment setup It’s convenient if the ROS envi-
ronment variables are automatically added to your bash

8

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

3DV
#****

3DV
#****

3DV 2014 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

session every time a new shell is launched:
echo "source /opt/ros/jade/setup.bash"

>> ˜/.bashrc source ˜/.bashrc If you have
more than one ROS distribution installed, ˜/.bashrc must
only source the setup.bash for the version you are currently
using.

If you just want to change the environment of your cur-
rent shell, you can type:

source /opt/ros/jade/setup.bash
1.7. Getting rosinstall rosinstall is a frequently used
command-line tool in ROS that is distributed separately. It
enables you to easily download many source trees for ROS
packages with one command.

To install this tool on Ubuntu, run:
sudo apt-get install

python-rosinstall Build farm status The pack-
ages that you installed were built by ROS build farm.

6.1.5 Install ar sys

3D pose estimation ROS package using ArUco marker
boards. To install this package run git clone
https://github.com/coloss/ar sys.git

6.1.6 Install PyOpenGL

To be able to run the animations you new to have Py-
OpenGL, the quickest way to install it is using pip
$ pip install PyOpenGL
PyOpenGL accelerate

6.1.7 Set up Augmented Reality Chess

To run the source code properly a specific file structure is
needed.

1. Create a catkin workspace cd ˜; mkdir
˜/catkin ws

2. Clone the ros part of the implemen-
tation in this directory git clone
https://github.com/alexus37/ROSARCHESS.git

3. Clone the rendering part in an arbitary
folder and link the path in the file
catkin ws/src/kinect io/scripts/listener.py git
clone https://github.com/alexus37/
AugmentedRealityChess.git

4. Calibrate the Kinect camera using the ros CALI
BLA to create the a cali.yml file

5. Calibrate the IR camera and create the a cali.yml file

6.1.8 Run the game

1. Run the roscore roscore

2. Open a new terminal and run openNi to be able
to interact with the kinnect roslaunch openni
openi.launch

3. Open a new terminal and run ros arsys to be
able to track the markers roslaunch arsys
singleboardOcclusion

4. connecte via ssh to connect to the thermal camera.
shh px4@192.168.1.2

5. Also run the roscore on the IR cam roscore

6. Run the command rosrun px4 px4

7. Launch the video stream roslauch
leptonvideo leptonvideo

8. Open a new terminal on your machine and
run the listener roslaunch kinectio
kinectio.listner

References
[1] T. Ahle. Sunfish chess engine, 2015. 6
[2] D. Kurz. Thermal touch: Thermography-enabled everywhere

touch interfaces for mobile augmented reality applications.
Metaio GmbH, 8(1):1–8, 2014. 2

[3] Library. Ar-sys, 2015. 5
[4] Library. Aruco, 2015. 2, 3
[5] Library. Opencv, 2015. 2

9

